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Local scale invariance as dynamical space-time symmetry in phase-ordering kinetics
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The scaling of the spatiotemporal response of coarsening systems is studied through simulations of the
two-dimensional~2D! and 3D Ising model with Glauber dynamics. The scaling functions are consistent with
the prediction of local scale invariance, thereby suggesting the extension of dynamical scaling to a space-time
dynamical symmetry.
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Ageing phenomena are observed in a broad variety
systems with slow relaxation dynamics. Useful insight m
often be gained via the consideration of simple ferrom
netic models ~rather than genuinely glassy system!,
quenched to a temperatureT,Tc from a disordered initial
state into the low-temperature phase. For their study t
time quantities, rather than the more usual one-time qua
ties, are particularly useful, see Refs.@1–3# for recent re-
views. Those display dynamical self-similarity in the agei
regime where the order-parameter autocorrelatorC(t,s)
5^f(t)f(s)& decays from its plateau valueqEA5Meq

2 to
zero (Meq is the spontaneous magnetization!. In this regime
both s and t5t2s are much larger than the microscop
time scale~set to unity!. Similarly, the autoresponse function
defined asR(t,s)5d^f(t)&/dh(s) with t.s shows a scaling
behavior such that the scaling laws

C~ t,s!.Meq
2 f C~ t/s!, R~ t,s!.s212af R~ t/s! ~1!

with f C(1)51 are found to hold for a broad range of mode
@1–3#. For x@1, the scaling functions usually fall off a
f C(x);x2lC /z and f R(x);x2lR /z, wherez is the dynamic
critical exponent,lC is the autocorrelation exponent@4,5#,
andlR is the autoresponse exponent@6#. We shall focus here
on phase ordering in the Glauber-Ising model ind.1 di-
mensions wherea51/z51/2 is expected@2,7#. Recent argu-
ments @8# leading to a51/4 in the two-dimensional~2D!
Glauber-Ising model have been rejected through a deta
study of the scaling ofR(t,s), the results of which reconfirm
a51/2 @9#.

Equation~1! states that the two-time quantities evaluat
at the samespatial location transform covariantly under
global rescaling of timet→bt with b constant. Recently, i
has been proposed that the response functions should t
form covariantly underlocal scale transformations withb
5b(t), but with time translations excluded@10#. By analogy
with conformal invariance, in particular covariance ofR un-
der the so-called ‘‘special’’ transformations which transfo
time as t→t/(11gt), is assumed. If that is the case, th
exact autoresponse scaling function becomes@10,11#
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f R~x!5r 0x11a2lR /z~x21!212a ~2!

and depends on the universality classes only through the
ues of the exponentsa andlR /z, while r 0 merely is a nor-
malization constant. This prediction of local scale invarian
~LSI! has been confirmed in a variety of physically ve
different models, see Ref.@10#, and references therein. Stil
better evidence in favor of LSI than mere phenomenolo
would be desirable.

The origin of LSI can be understood in the special ca
z52 ~which is realized in all cases of phase-ordering kin
ics we are going to consider@12#!. A Ward identity can be
written down such that if the system is known to be~i! scale
invariant withz52 and~ii ! Galilei invariant, then its invari-
ance under the full group of local scale transformations f
lows @13#. Therefore, scale invariance and Galilei invarian
appear as the building blocks for LSI. So far, no explicit te
of Galilei invariance in phase-ordering systems was ever p
formed.

Tests of Galilei invariance require the study of the tim
and space dependence of response functions. For phas
dering, it is natural to expect a scaling behavior of the line
response function

R~ t,s;r !5
d^f r~ t !&
dh0~s!

U
h50

5s212aFRS t

s
,

r

~ t2s!1/zD
with the scaling functionFR(x,u) andFR(x,0)5 f R(x). For
z52, Galilei invariance~combined with the Ward identity o
LSI! predicts@10,13,14#

R~ t,s;r !5R~ t,s!expS 2
M
2

r2

t2sD , ~3!

whereR(t,s) is the autoresponse function given by Eqs.~1!
and ~2! and M is a direction-dependent nonuniversal co
stant. Equation~3! gives the full spatiotemporal scaling o
the linear response. We shall successfully test it in the
and 3D kinetic Glauber-Ising models and provide there
evidence of Galilei invariance in a phase-ordering syste
Since the 2D/3D Glauber-Ising model cannot be reduced
free-field theory, it is nontrivial that itsexactresponse func-
tion should take the simple free-field form~3!.
©2003 The American Physical Society01-1
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As precise simulational data for the autoresponseR(t,s)
are difficult to obtain, it is convenient to study instead t
thermoremanent magnetizationMTRM @15#

TMTRM~ t,s!/h(0)5r~ t,s!5TE
0

s

du R~ t,u!. ~4!

We consider the Ising model on a hypercubic lattice, w
periodic boundary conditions and HamiltonianH5
2( ( i,j )s is j . We use heat-bath dynamics defined through
stochastic rule

s i~ t11!561 with probability
1

2
$16tanh@hi~ t !/T#%

~5!

with the local fieldhi(t)5(a( i)sa(t) and wherea( i) runs
over the nearest neighbors of the sitei. MTRM(t,s) is mea-
sured by applying a quenched spatially random magn
field 6h(0) for times between the quench att50 and the
waiting times @15#. The presence of this external field the
changes the local field in Eq.~5! to hi(t)5(a( i)sa(t)
6h(0) .

It has been understood recently that the scaling beha
of MTRM for s@1 is not a simple power law but rather show
a crossover behavior@8,16#. It is of the form@9#

r~ t,s!5r 0s2af M~ t/s!1r 1s2lR /zgM~ t/s! ~6!

provided the system was initially prepared at infinite te
perature. Here the correction term can be estimated
gM(x).x2lR /z, while the scaling functionf M(x) can be
found from local scale invariance using Eqs.~1!, ~2!, and~4!
and is given explicitly by Eq.~5.47! in Ref. @10#. Finally, r 0,1
are normalization constants. In practice, it turns out thatlR
is quite close to its lower boundd/2 and in particular in 2D
case, the correction to the leading scaling behavior is s
able. Before any meaningful study of the spatiotemporal
sponse can be carried out, the correction term must be
tracted off.

As explained in Ref.@9#, this can be carried out by fixing
a value ofx5t/s. Thenr 0,1 are obtained by fitting Eq.~6! to
the computed thermoremanent magnetizationMTRM . In or-
der to illustrate the quality of this procedure, we show in F
1 data for the scaling functionf M(x) obtained after subtrac
tion of the correction termr 1s2lR /zgM(t/s) from the inte-
grated autoresponser of the 2D and 3D Glauber-Ising
model. Statistical error bars in 2D case are smaller than
symbol size and in 3D case are of the order of the scatte
the data. In Table I, we list the values oflR @4,17# and the
constantsr 0,1 which were determined atx57. We find a nice
data collapse and a clear agreement with the LSI predict

Having thus checked the expected scaling of the aut
sponse function, we can now turn towards the spatiotemp
response. Again, we consider the integrated response r
than R(t,s;r ) because it is considerably less affected
noise. In order to fix the nonuniversal parameterM in Eq.
~3!, we form
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r0~ t,s;r !5TE
0

s

dt R~ t,s2t;r ! ~7!

which is measured on the lattice by keeping a small rand
magnetic field6h(0) until the waiting times at the site0 and
then observing the thermoremanent magnetizat
MTRM(t,s;r )5h(0)r0(t,s;r )/T5^h0 s r(t)&/T at a different
site r ~where ^•••& indicates an average over the therm
noise whereas the bar means an average over the ran
field distribution!. We computed the spatially and temporal
integrated response for the Ising model with Glauber dyna
ics in two and three dimensions. The two-dimensional s
tems usually contained 3002 spins on a square lattice
whereas in three dimensions cubic lattices with typically 63

sites were considered. Some Monte Carlo simulations w
also done for other system sizes in order to check aga
finite-size effects. Sincer0(t,s;r ) is very noisy, one must
average over a large number of runs with different reali
tions of the thermal noise and of the spatially random m
netic field. For every waiting time we avaraged over at le
50 000 different runs. The whole study took about 23105

CPU h on a SGI Origin 3800 parallel computer.
Following the same lines as in Ref.@9#, we arrive at the

scaling form@18#, wherer varies along a fixed direction on
the lattice

FIG. 1. Scaling of the integrated response functionr for the
Glauber-Ising model.~a! 2D at temperatureT51.5 and~b! 3D at
T53. The symbols correspond to different waiting times. The f
curves are obtained by integrating Eq.~2!.

TABLE I. Values of the autoresponse exponentlR and of the
parametersr 0 , r 1 andM in the Glauber-Ising model in two dimen
sions atT51.5 and in three dimensions atT53.

lR r 0 r 1 M
2D 1.26 2.6560.05 22.7660.05 4.0860.04
3D 1.60 0.3160.02 0.6160.02 4.2260.05
1-2
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r0~ t,s;r !.r`~ t2s;r !1r 0s2aF0S t

s
,Mr 2

s D
1r 1s2lR /zG0S t

s
,Mr 2

s D , ~8!

where the universal scaling functions read

F0~x,y!5E
0

1

dv exp@2y/2~x211v !#hR~x,v !,

G0~x,y!.x2lR /ze2y/2x, ~9!

with hR(x,v)ª f R@x/(12v)#(12v)212a, where M is a
direction-dependent new parameter. In this work we cho
T such as to keep anisotropy effects small and also to a
the crossover to critical dynamics atT5Tc . This is illus-
trated in Fig. 2, for the 2D case atT51.5, where we plotF0
as function ofr 2/s. For the displayed data pointsr varies
between 1 and 2As when going along the~10! direction and
betweenA2 andA2s when going along the~11! direction. At
the considered temperature any anisotropy is very small
the values ofM, determined separately in the two dire
tions, coincide,M(10)5M(11)5M. Similar results also hold
in 3D at T53. We fix M at x57 ~see Table I and inset o
Fig. 2! using Eq.~8! and then obtain a parameter-free pr
diction for other values ofx. This is shown in the inset o
Fig. 2, where the LSI-prediction is compared to numeri
data for two additional values ofx and two different waiting
times. Since by now all nonuniversal parameters are fix
this constitutes by itself a quantitative test of local scale
variance.

A fuller test of the spatiotemporal response is obtained
considering the spatially and temporally integrated respo
function

FIG. 2. Scaling of the temporally integrated response funct
r0 for the 2D Glauber-Ising model atT51.5 ands5225. Data
obtained along the~10! @~11!# direction are shown by open~filled!
symbols. Diamonds,x55; triangles,x57; and circles,x59. Inset:
Determination of the massM, see main text. Some typical erro
bars are shown in the inset.
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dr~ t,s;m!

dV
5TE

0

s

du E
0

Ams
dr r d21R~ t,u;r !, ~10!

where the space integral is along a straight line of lengthL
5Ams but we do allow for the possibility of an anisotropy a
a function of the solid angleV. Such anisotropies are know
to occur ifT,Tc @19#. As before, we derive from Eq.~3! the
scaling form@18#

dr~ t,s;m!

dV
5r (1)~ t2s,r2!1r 0sd/22ar (2)~ t/s,m!

1r 1sd/22lR /zr (3)~ t/s,m! ~11!

with the explicit scaling functions

r (2)~x,m!5
md/2

d E
0

1

dv hR~x,v !FdS Mm

x211v D ,

r (3)~x,m!.
md/2

d
x2lR /zFdS Mm

x D , ~12!

Fd~y!5e2y/2
1F1S 1,11

d

2
;
y

2D .

This is the general expression for the scaling of the s
tiotemporally integrated response function. If we fixm and
let x5t/s vary, the form of the scaling function o
sa2d/2dr/dV merely depends onm. We stress that the expo
nentlR and the free parametersr 0 ,r 1 ,M are now all fixed
such that there remains no free fitting parameter at all w
comparing Eq.~11! with our numerical data.

It is of interest to compare the maximal distancer max
accessed by our simulation with the physical length scale
the problem, for example, the domain sizeL(s) at the instant
the magnetic field is turned off. From the correlation fun
tion, in 2D we estimateL(s)'3,6,9.5 for s525,100,225,
respectively, with h(0)50.05. In 3D, we find L(s)
'2.1,3.3,4 fors525,64,100. As expectedL(s);s1/z, with
z'2. The valuem54 (m52) corresponds tor max/L(s)
'3.2 ~3.4! in 2D ~3D! case, respectively and we see that t
data probe the large-distance region, well beyond the dom
sizeL(s).

The integrated spatiotemporal response in 2D atT51.5 is
shown in Fig. 3 for two values ofm and where the correction
r (3) was already subtracted off. We find a nice scaling b
havior over the whole range of waiting times we could co
sider. We stress that the agreement between local scal
variance~3! and our data for several values ofm is a real
test, since no free parameter remains. In particular, both
height and the position of the maximum of the scaling fun
tion for m52 and 4 are completely fixed. We can conclu
that the LSI prediction@Eqs. ~11! and ~12!# is fully vindi-
cated. Here the exact functional form of the scaling funct
of the spatiotemporal response of a generic nonequilibr
spin system is found.

n
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Similarly, the integrated spatiotemporal response in
case atT53 is shown in Fig. 4. Again, a nice scaling beha
ior in perfect agreement with LSI is found.

Prediction~3! is also verified in a few exactly solvabl
models with a nonconserved order parameter and underg
phase-ordering kinetics withz52. In particular, Eq.~3!
holds in thed-dimensional kinetic spherical model withd
.2 quenched to eitherT,Tc or T5Tc and independent o
initial correlations@6,16,20–22#.

Summarizing, we presented a quantitative study of
scaling of the spatio-temporal response in coarsening

FIG. 3. Scaling of the integrated spatiotemporal response fu
tion r for the 2D Glauber-Ising model atT51.5 and at~a! m51
~inset:m54) and~b! m52 @integrating~i! along the~10! direction
and~ii ! along the~11! direction#. The full curves are from Eq.~12!.
Error bars are smaller than the symbol size.
-
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tems. We find evidence for Galilei invariance in the agei
regime of a phase-ordering system. Our result provide
strong indication that LSI is indeed a truespace-timedy-
namical symmetry of statistical systems undergoing pha
ordering kinetics. The presence of this symmetry in a n
equilibrium phase transition was not anticipated.

We thank B.P. Vollmayr-Lee and C. Godre`che for discus-
sions. This work was supported by the Bayerisc
Französisches Hochschulzentrum~BFHZ! and by CINES
Montpellier ~Project No. pmn2095!.

c- FIG. 4. Scaling of the integrated spatiotemporal response fu
tion r for the 3D Glauber-Ising model atT53 and at~a! m51 and
~b! m52 @integrating~i! along the~100! direction and~ii ! along the
~110! direction#. The full curves are from Eq.~12!. Some typical
error bars are also shown.
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