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Local scale invariance as dynamical space-time symmetry in phase-ordering kinetics
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The scaling of the spatiotemporal response of coarsening systems is studied through simulations of the
two-dimensional2D) and 3D Ising model with Glauber dynamics. The scaling functions are consistent with
the prediction of local scale invariance, thereby suggesting the extension of dynamical scaling to a space-time
dynamical symmetry.
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Ageing phenomena are observed in a broad variety of fr(X)=rox! @ MR/Z(x—1)"172 2)
systems with slow relaxation dynamics. Useful insight may
often be gained via the consideration of simple ferromagand depends on the universality classes only through the val-
netic models (rather than genuinely glassy systdms ues of the exponents and\g/z, while ro merely is a nor-
quenched to a temperatufe<T. from a disordered initial malization constant. This prediction of local scale invariance
state into the low-temperature phase. For their study twof| S|) has been confirmed in a variety of physically very
time quantities, rather than the more usual one-time quantidifferent models, see Reff10], and references therein. Still,
ties, are particularly useful, see Refd—3] for recent re-  better evidence in favor of LS| than mere phenomenology
views. Those display dynamical self-similarity in the ageingwould be desirable.
regime where the order-parameter autocorrela@ft,s) The origin of LS| can be understood in the special case
=(¢(t)d(s)) decays from its plateau valuge,= ng to  z=2 (which is realized in all cases of phase-ordering kinet-
zero (M4 is the spontaneous magnetizajiom this regime  ics we are going to consid¢i2]). A Ward identity can be
both s and r=t—s are much larger than the microscopic written down such that if the system is known to (bescale
time scalg(set to unity. Similarly, the autoresponse function, invariant withz=2 and(ii) Galilei invariant, then its invari-
defined af(t,s) = &( ¢(t))/ Sh(s) with t>s shows a scaling ance under the full group of local scale transformations fol-
behavior such that the scaling laws lows [13]. Therefore, scale invariance and Galilei invariance
appear as the building blocks for LSI. So far, no explicit test
C(t,s)= ngfc(t/s), R(t,s)=s 1 3f(t/s) (1) ?Jrﬁq?(ijlei invariance in phase-ordering systems was ever per-
. Tests of Galilei invariance require the study of the time
with fc(1)=1 are found to hold for a broad range of models and space dependence of response functions. For phase or-

[1-3]. For x>1, the scaling functions usually fall off as dering, it is natural to expect a scaling behavior of the linear
fo(x)~x"*c’* and fr(x) ~x"*r%, wherez is the dynamic  response function

critical exponent\¢ is the autocorrelation exponeft,5|,

and\g is the autoresponse exponég@l. We shall focus here S (1)) t r
on phase ordering in the Glauber-lsing modeldir 1 di- R(t,s;r)zéh—r =s 172, —,—1/2)
mensions whera=1/z=1/2 is expected2,7]. Recent argu- oS) 1o S (t—s)

ments[8] leading toa=1/4 in the two-dimensiona(2D) ) ) )
Glauber-Ising model have been rejected through a detailedith the scaling functiorFr(x,u) andFg(x,0) = fgr(x). For
study of the scaling oR(t,s), the results of which reconfirm z=2, Galilei invariancgcombined with the Ward identity of
a=1/2[9]. LSI) predicts[10,13,14
Equation(1) states that the two-time quantities evaluated
at the samespatial location transform covariantly under a
global rescaling of timé— bt with b constant. Recently, it
has been proposed that the response functions should trans-
form covariantly undetdocal scale transformations witb ~ whereR(t,s) is the autoresponse function given by E¢fs.
=b(t), but with time translations exclud¢d0]. By analogy and (2) and M is a direction-dependent nonuniversal con-
with conformal invariance, in particular covarianceR®tn-  stant. Equation3) gives the full spatiotemporal scaling of
der the so-called “special” transformations which transformthe linear response. We shall successfully test it in the 2D
time ast—t/(1+ yt), is assumed. If that is the case, theand 3D kinetic Glauber-Ising models and provide thereby
exact autoresponse scaling function becohi€s11] evidence of Galilei invariance in a phase-ordering system.
Since the 2D/3D Glauber-Ising model cannot be reduced to a
free-field theory, it is nontrivial that itexactresponse func-
*Laboratoire associau CNRS(UMR 7556. tion should take the simple free-field for(8).

N M r?
R(t,s,r)—R(t,s)exr{—TE), ©)
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As precise simulational data for the autorespoR§gs) 1 — 1.5 ———
are difficult to obtain, it is convenient to study instead the . 525
thermoremanent magnetizatidfirgy, [15] o 5236
. 05 | Syl
TMTRM('[,S)/h(O):P(t,S):TjodU R(t,u). (4) ot% . =81
—_ s v s=100
x
We consider the Ising model on a hypercubic lattice, with:g {1 -05 | 4
periodic boundary conditions and Hamiltoniaft= =
—2,joioj. We use heat-bath dynamics defined through the™ _, |
stochastic rule 15| |
. o1 i R
oi(t+1)=*1 with probability E{litanr[ hi(t)/T]} (a) i (b) *l
5) -2 L -25 —
0 1 2 0 1 2
with the local fieldhi(t) =3 4 0(t) and wherea(i) runs In(x) In(x)

over the nearest neighbors of the siteM ;gu(t,s) is mea-
sured by applying a quenched spatially random magneticéI
field =h, for times between the quench &0 and the
waiting times [15]. The presence of this external field then
changes the local field in Eq() to hi(t) =2 ;oa(t)
+hg.

Ié P)1as been understood recently that the scaling behavior polt S'r)zTFdrR(t s— 1) @
of Mgy for s=1 is not a simple power law but rather shows ” 0 o
a crossover behavigB,16]. It is of the form[9]

FIG. 1. Scaling of the integrated response functioifior the
auber-Ising model(a) 2D at temperatur§ =1.5 and(b) 3D at
T=3. The symbols correspond to different waiting times. The full
curves are obtained by integrating Eg).

which is measured on the lattice by keeping a small random
magnetic field= h o, until the waiting times at the sited and

provided the system was initially prepared at infinite tem-then observing the - thermoremanent —magnetization
perature. Here the correction term can be estimated A ru(t,Si) =h(o)po(t,SiN)/T=(y o (1))/ T at a different
gu(X)=x "R’z while the scaling functiorf,,(x) can be site r (where(---) indicates an average over the thermal
found from local scale invariance using E@¥), (2), and(4) noise _Wh_ere?‘S the bar means an average over the random
and is given explicitly by Eq(5.47) in Ref.[10]. Finally, rg 1 f|eld distribution. We compute_d the spatla!ly and temporally
are normalization constants. In practice, it turns out Ni;at integrated response for the Ising model with Glauber dynam-

is quite close to its lower bound/2 and in particular in 2D ![C?nm two alllnd thrneteirtljlgeggloonsih Thentwo-dlme:lsml)nt?iI Sys-
case, the correction to the leading scaling behavior is sizecms usually contained SpINS on a square 1atuce,
able. Before any meaningful study of the spatiotemporal rey\{hereas n threg dimensions cubic lattices W'.th typ|.call§/ 60
sponse can be carried out, the correction term must be syfites were considered. Some Monte Carlo simulations were

tracted off also done for other system sizes in order to check against

As explained in Ref9], this can be carried out by fixing finite-size effects. Sinc@o(t,s;r) is very _nois_y, one must
a value ofx=t/s. Thenr,, are obtained by fitting Eq(6) to average over a large number of runs with different realiza-

the computed thermoremanent magnetizatibfk,,. In or- 2025 ]fi)f Itc?eFthrerTarl nv?/lsiﬁnangr:f tze ssa:lallydrar\l/d?mt rlnag£
der to illustrate the quality of this procedure, we show in Fig. etic Tieid. or every walling ime we avaraged over at leas

1 data for the scaling functiofy,(x) obtained after subtrac- g%%og gfzrgrglrg?is 'ir?—ggov(\)/hoﬁaﬁgﬁ)grfolieibom oy
tion of the correction termi;s™ *r'?gy,(t/s) from the inte- g P puter.

grated autoresponsg of the 2D and 3D Glauber-Ising F_ollowing the same lines as in R¢B], we a"‘_"e a.‘t the

model. Statistical error bars in 2D case are smaller than thﬁ_‘calmg_ form[18], wherer varies along a fixed direction on

symbol size and in 3D case are of the order of the scatter i e lattice

the data. In Table I, we list the values ®§ [4,17] and the

constants o ; which were determined at=7. We find a nice TABLE |. Values of the autoresponse exponant and of the

data collapse and a clear agreement with the LSI predictiorParameters,, r, andM in the Glauber-Ising model in two dimen-
Having thus checked the expected scaling of the autore®©ns alf =1.5 and in three dimensions #t-3.

sponse function, we can now turn towards the spatiotemporat

p(1,8)=ros 2fy(t/S)+r,5 "R/Zg(t/s) (6)

response. Again, we consider the integrated response rather e fo M1 M
than R(t,s;r) because it is considerably less affected by 2p 1.26 2.650.05 —2.76+0.05 4.08-0.04
noise. In order to fix the nonuniversal parameterin Eq. 3D 1.60 0.310.02 0.610.02 4.22-0.05

(3), we form
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dp(t,s; S [Yes
M:TJ duJ ”sdrrd‘lR(t,u;r). (10
dQ 0 0

where the space integral is along a straight line of length
= \/us but we do allow for the possibility of an anisotropy as
a function of the solid angl€. Such anisotropies are known
to occur if T<T, [19]. As before, we derive from E@3) the
scaling form[18]

F,(x,I7s)

dp(t,s;u)
dQ

=pM(t—s,r2)+rs¥* 2p)(t/s, 1)

0.05 S S ~
0.0 1.0 2.0 3.0 4.0 +1,8%27 RZ2pC) /s, 1) (11)

with the explicit scaling functions
FIG. 2. Scaling of the temporally integrated response function

po for the 2D Glauber-Ising model af=1.5 ands=225. Data dr2 rq M
obtained along th€10) [(11)] direction are shown by opefiilled) P(z)(X,,U«) = r do hR(X,v)]_‘d(—M)'
symbols. Diamondss=5; trianglesx=7; and circlesx=9. Inset: d Jo Xx—1+v
Determination of the masa1, see main text. Some typical error
bars are shown in the inset. d/2
me Mp
, P(S)(X,M):TX AR/Z]'-d(T), (12
t r
po(t,s;r)zpw(t—s;r)ﬂosaFO(—,M—)
S S dy
2 fd(y):e_yllel 1,1+ E,E)

+r,87 \R/2G (3 Mo (8)
1 0 s’ s’
This is the general expression for the scaling of the spa-
where the universal scaling functions read tiotemporally integrated response function. If we fixand
let x=t/s vary, the form of the scaling function of
1 s2~92dp/dQ) merely depends op. We stress that the expo-
Fo(X,y)= fo dv exf —y/2(x—1+v)]hr(X,0), nent\g and the free parameterg,r,, M are now all fixed
such that there remains no free fitting parameter at all when
. comparing Eq(11) with our numerical data.
Go(x,y)=Xx""R7e™ ¥, 9 It is of interest to compare the maximal distancg,,
accessed by our simulation with the physical length scale of
with hg(x,0):=fg[x/(1—v)](1—v) *~2 where M is a the problem, for example, the domain slzgs) at the instant
direction-dependent new parameter. In this work we chooseéhe magnetic field is turned off. From the correlation func-
T such as to keep anisotropy effects small and also to avoiglon, in 2D we estimatd_(s)~3,6,9.5 fors=25,100,225,
the crossover to critical dynamics &t=T.. This is illus-  respectively, with h)=0.05. In D, we find L(s)
trated in Fig. 2, for the 2D case @t=1.5, where we ploF,  ~2.1,3.3,4 fors=25,64,100. As expected(s)~s'?, with
as function ofr?/s. For the displayed data pointsvaries z~2. The valueu=4 (u=2) corresponds ta m.,/L(S)
between 1 and ¢s when going along thél0) direction and ~3.2(3.4) in 2D (3D) case, respectively and we see that the
betweeny2 andy/2s when going along thél1) direction. At data probe the large-distance region, well beyond the domain
the considered temperature any anisotropy is very small ansizeL(s).
the values ofM, determined separately in the two direc- The integrated spatiotemporal response in 2DatL.5 is
tions, coincide M 0= M 41y= M. Similar results also hold shown in Fig. 3 for two values gk and where the correction
in 3D atT=3. We fix M atx=7 (see Table | and inset of p® was already subtracted off. We find a nice scaling be-
Fig. 2 using Eq.(8) and then obtain a parameter-free pre-havior over the whole range of waiting times we could con-
diction for other values ok. This is shown in the inset of sider. We stress that the agreement between local scale in-
Fig. 2, where the LSI-prediction is compared to numericalvariance(3) and our data for several values pgfis a real
data for two additional values ofand two different waiting test, since no free parameter remains. In particular, both the
times. Since by now all nonuniversal parameters are fixedheight and the position of the maximum of the scaling func-
this constitutes by itself a quantitative test of local scale intion for u=2 and 4 are completely fixed. We can conclude
variance. that the LSI predictior[Egs. (11) and (12)] is fully vindi-
A fuller test of the spatiotemporal response is obtained bycated. Here the exact functional form of the scaling function
considering the spatially and temporally integrated responsef the spatiotemporal response of a generic nonequilibrium
function spin system is found.
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FIG. 3. Scaling of the integrated spatiotemporal response func- G- 4. Scaling of the integrated spatiotemporal response func-
tion p for the 2D Glauber-Ising model &=1.5 and at(@ u=1 ton p for the 3D Glauber-Ising model dt=3 and at(@ x=1 and
(inset: =4) and(b) w=2 [integrating(i) along the(10) direction () #=2 [integrating(i) along the(100 direction andii) along the
and(ii) along the(11) directior]. The full curves are from Eq12). (110 directionl. The full curves are from Eq(12). Some typical
Error bars are smaller than the symbol size. error bars are also shown.

Similarly, the integrated spatiotemporal response in 3Dtem_s. We find evidence fgr Galilei invariance in the ageing
case aff =3 is shown in Fig. 4. Again, a nice scaling behav- "€9ime _of_a phase—ordermg _system. Our result_prowdes a
ior in perfect agreement with LSl is found. strong indication that LSI is indeed a trigpace-timedy-

Prediction(3) is also verified in a few exactly solvable hamical symmetry of statistical systems undergoing phase-
models with a nonconserved order parameter and undergoirffdering kinetics. The presence of this symmetry in a non-
phase-ordering kinetics witz=2. In particular, Eq.(3)  equilibrium phase transition was not anticipated.
holds in thed-dimensional kinetic spherical model with
>2 quenched to eithéf<T, or T=T. and independent of We thank B.P. Vollmayr-Lee and C. Godte for discus-
initial correlations[6,16,20—22. sions. This work was supported by the Bayerisch-

Summarizing, we presented a quantitative study of théFranzsisches HochschulzentrutBFHZ) and by CINES
scaling of the spatio-temporal response in coarsening sy$ontpellier (Project No. pmn2095
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